
Theor Chim Acta (1987) 71:117-148

�9 Springer-Verlag 1987

Computational chemistry on the FPS-X64 scientific
computers

Experience on single- and multi-processor systems

Martyn F. Guest 1, Robert J. Harrison t, Johan H. van Lenthe 2, and Lambertus
C. H. van Corler 2

~Computational Science Group, SERC Daresbury Laboratory, Daresbury, Warrington WA4 4AD,
UK
2Theoretical Chemistry Group, State University of Utrecht, Transitorium III, Padualaan 8,
Utrecht-De Uithof, The Netherlands

(Received July 7, revised and accepted September 10, 1986)

Contents

1. Introduction . 118
1.1. Cost-effective computing in chemistry . 118

2. The FPS-X64 scientific computers . 119
2.1. Hardware . 120
2.2. Strategy for using the scientific computer 120

3. Computational chemistry . 121
3.1. Code implementation strategy . 121
3.2. Disk I / O . 124
3.3. Role of the MMO . 125

4. An ab iniao computational chemistry system 128
4.1. Implementation of GAMESS on an FPS-164 129
4.2. Performance of GAMESS on an FPS-164 130
4.3. Performance of the FPS-264 . 132
4.4. Towards open-ended ab initio capabilities 133

5. Cost effectiveness of the FPS-164 . 134
6. Parallel processing and computational chemistry 134

6.1. Extremes in multiprocessor implementations 135
6.2. MVAP architectures . 136
6.3. CMP architectures . 137

6.3.1. Available CMP systems . 138

118 M.F. Guest et al.

7. A parallel implementation of quantum chemistry codes 138
7.1. The parallel environment at ECSEC . 139
7.2. Implementation strategy . 140
7.3. Practical considerations . 141

7.3.1. Integrals and SCF . 141
7.3.2. Integral transformation . 142
7.3.3. Direct-CI . 142
7.3.4. Preliminary results . 143

7.4. Role of parallelism in computational chemistry 143
8. Summary . 145
Appendices
I. A computational chemistry and physics benchmark 146
II. Using the APs under APEX64 . 146

1. Introduction

The purpose of this paper is to review the impact and use of the FPS-X64 scientific
computers in computational chemistry, focusing attention on experience gained
on both an FPS-164/MAX, installed at the Science and Engineering Research
Council 's Daresbury Laboratory, UK, and on the distributed system, composed
of an IBM 4381-3 front end processor and 10 FPS-164 attached array processors,
at the ECSEC facility in Rome, Italy.

The review is necessarily selective, and is divided into several sections. In Sect.
2 we outline some general characteristics of the FPS-X64 machines. We consider
their performance in various computational chemistry kernels in Sect. 3, where
the general strategy adopted in code implementation is outlined. In Sect. 4 we
consider the implementation and performance on FPS X64 scientific computers
of a typical ab initio program, GAMESS, and provide in Sect. 5 estimates of the
cost-effectiveness of these machines in the context of supercomputers exemplified
by the Cray-lS and CDC Cyber-205.

In Sect. 6 we consider the feasibility of migrating computational chemistry codes
to the different architectures characteristic of the next generation of multipro-
cessors. Finally, in Sect. 7 we describe our initial attempts at adapting codes to
run on the distributed system of multiple FPS processors at the ECSEC facility
in Rome.

1.1. Cost-effective computing in chemistry

The introduction in 1976 of the VAX 11/780 by Digital provided arguably the
greatest impetus to the use of minicomputers in large scale chemical computations,
and led to the migration of many theoretical chemists from the less cost-effective
alternative offered by the large scalar mainframes that typified the central comput-
ing facility of the 1960s and 1970s. Since 1976 use of the VAX-11/780 "super-
minicomputer" or its equivalents in chemical computations has proliferated to
the extent of becoming a de facto standard. Yet even the new generation of
superminis, from Data General, Digital, Gould/SEL, Prime, Harris, IBM and
Perkin-Elmer [1], that provide speeds several times that of the VAX-11/780,

Computational chemistry on FPS-X64 computers i19

cannot disguise the fact that such machines are often inadequate for more than
routine applications. Indeed the superminis perform as much as two orders of
magnitude slower than the supercomputers in widespread use, the Cray-lS and
CDC Cyber-205.

The search for increased cost-effective performance is evident in the emergence
of two classes of computer systems during the last decade, the supercomputer
itself and superminis with attached processors (hereafter referred to as mini + AP).
We consider in the sections below the relative merits of these two approaches
and, by comparing the performance of chemical software on both Cray-lS and
FPS-164/MAX, consider whether mini § AP configurations represent genuine
alternatives to time-shared supercomputer access.

The pioneering work on the FPS-164 attached scientific computer was conducted
by workers in the theoretical chemistry group at Argonne National Laboratory
[2]. This work demonstrated that the FPS-164 provides performance comparable
to that of modern mainframe computers at a cost comparable to that of a
supermini. A feature of the Argonne work, however, and one that will continually
be reflected in the following sections, is that achieving such performance requires
considerable care in developing and implementing codes. Such an effect is, of
course, well established in the regime of supercomputers typified by the Cray-lS
[3-5].

Finally, mention should be made of the inevitable path that lies ahead in the
search for improved performance, namely the exploitation of the parallelism
inherent in scientific computation. Perhaps the most impressive demonstration
in a chemical framework of migrating code from sequential to parallel is seen in
the LCAP parallel system due to Clementi and co-workers at Kingston, New
York [6], which has at present a theoretical performance of about 110 Mflops
[6]. Indeed, execution times for various chemistry codes on the distributed system
are comparable to those on a Cray-lS [7]. Such figures must, however, be
considered in the light of no attempt having been made to either exploit the
vector architecture of the Cray or to adapt the codes to the architecture of the
FPS-164 [7]. Our primary aim here is somewhat different. We wish to consider
the steps necessary to exploit the full performance of one AP, and to subsequently
contrast that performance with supercomputer performance typified by the Cray-
IS and Cyber-205. Consideration is given in Sect. 6 to the features of multipro-
cessor systems that are necessary in order to satisfy the requirements of computa-
tional chemistry, while our own experience in adapting codes to a parallel
environment will be considered in Sect. 7.

2. The FPS-X64 scientific computers

In this section we briefly review some features of the FPS-X64 scientific computers,
focusing attention on the FPS-164 and the machine configuration at Daresbury.

The FPS-164 attached processor is a highly parallel, pipelined processing unit.
It has been designed to be a fast and inexpensive CPU with 64-bit floating point

120 M.F. Guest et al.

operations. The processor is commonly referred to as an array processor because
of its ability to perform array operations quickly. The AP contains an independent
CPU and its own memory and disk drives. The CPU on the FPS-164 runs at 5.5
million instructions per second, and several concurrent operations can take place
on each instruction cycle, so that peak performance is about 11 megaflops. While
allowing for the distinction between peak and realised performance, the AP has
proved effective for the specialised "number crunching" that constitutes a large
part of scientific and engineering computer applications [2, 8].

The machine may be upgraded to an FPS-164/MAX, providing the potential to
include vector features through the addition of special purpose boards to augment
performance, particularly on matrix operations. Each MAX board adds 22 Mflops
to peak attainable performance. The present machine configuration at Daresbury
includes three such boards, and thus has a theoretical performance of 77 Mflops.

In February 1985 FPS announced the release of a new product, the FPS-264.
While maintaining 100% software compatability with the FPS-164, the reduction
in the machine clock cycle, from 182 to 53 ns, leads to the machine running at
least 3.45 times faster than its predecessor when executing software that does not
involve disk or transfers to the front end, cache misses, interleave spins or refresh.
While the machine architecture allows for the same type of memory-mapped
schemes used in the MAX implementation on the FPS-264 as on the 164, a MAX
version of the 264 remains unannounced given the requirement for ECL gate
arrays of a density not presently available.

2.1. Hardware

The machine logic is 64-bit with some VLSI components, but the overall tech-
nology is not state of the art. The 64 bit instruction word is capable of initiating
up to 10 tasks within each machine cycle (182 ns). The asynchronous and pipelined
design allows initiation of a task on a given unit on every machine cycle even
though a previous task is not finished. The parallel design allows simultaneous
initiation of tasks on more than one unit in the same machine cycle. For example,
an add, a multiply, a memory fetch, and compare can all be initiated with one
instruction word.

The machine at Daresbury comprises a main memory with 1.5 MWords
(12 MBytes) of storage, and a table memory. The main memory is the primary
storage unit, containing program source and data. The table memory, an auxiliary
storage medium, needs 2 machine cycles to complete a read or write request,
compared with 3 cycles for the main memory and is partitioned into a read-only
portion (TMROM, 8 KWords), containing certain constant tables, and a random
access portion (TMRAM, 16 KWords) which can be used via assembly language
or through FPS supplied math library routines.

2.2. Strategy for using the scientific computer

The AP may be used in two distinct ways. In the AP EXecutive (APEX) mode,
a host FORTRAN program calls subroutines that run on the AP. In contrast the

Computational chemistry on FPS-X64 computers 121

System Job Executive (SJE) mode allows a complete program to be run entirely
on the AP, and involves significantly less interaction and reliance on the host.
In this latter mode, the SJE software is run partially on the AP and partially on
the host. Typically in the SJE mode of operation the user can interact with the
SJE software on the host, load the executable module and data to the AP, create
other files on the disk subsystem, initiate execution and wait for the completion
of the job. Note that all usage of the Daresbury machine described in this paper
has relied exclusively on SJE mode, while the parallel implementation described
in Sect. 7 made extensive use of APEX mode (see Appendix II).

3. Computational chemistry

It is in conjunction with the remarkable progress in computer technology over
the last two decades that chemical theorists are now making the type of contribu-
tions to science envisaged by Dirac more than fifty years ago. Looking ahead,
we may be confident that within the next decade theoretical/computational
chemistry will be an equal partner with the traditional fields of organic, inorganic
and physical chemistry. Clearly, computers are and will continue to be part of
the arsenal of instrumentation available to molecular science.

The ab initio computation of the electronic structure of molecules is a subject
with a history at least as long as that of electronic computers themselves. Since
1960, the subject has shown a particularly rapid evolution, with the outcome that
many reasonably efficient computer programs are available on scalar machines.
These codes share at least two traits: they all represent a considerable investment
in man-years (say between 5 and 30) and all are relatively large (say between
20 000 and 150 000 lines of FORTRAN), as befits a complicated problem. The
advent of the large scale vector processors (e.g. Cray-1, CDC Cyber-205) and
their smaller brothers (e.g. FPS-164 and the more recent Convex C1) led to
substantial efforts [2-5] to alter the existing codes to conform with the require-
ments of these new machines. The aim throughout was to achieve a code design
which was reasonably transportable from one vector (or array or scalar) processing
computer to another, with the capability of driving these processors at somewhat
near their maximum power. Central to this effort was the realisation that five of
the most important steps in a typical quantum chemistry calculation may be
structured around the matrix multiply operation (MMO), yielding a relatively
machine independent structure, given that the MMO is capable of driving all
existing computers at their maximal power. A summary of the characteristics of
electronic structure calculations, and an outline of the MMO-based algorithms
involved has been given previously [2-3].

3.1. Code implementation strategy

Our experience in the development of optimised Quantum Chemistry (QC)
programs on vector processors typified by the Cray-1 and Cyber-205 suggests
that optimum performance can only be achieved by resorting to assembly language
constructs for many of the vector kernels involved, e.g. the matrix multiply

122 M.F . Guest et al,

operation (MMO), SCATTER, transposition etc. This partly reflects a lack of
"richness" in typical QC software, where for each fetch and store very little
floating point arithmetic occurs. This use of assembly code permits, for example,
account to be taken of the segmented nature of the scalar and vector functional
units, and enhances the MMO on the Cray-lS from some 37 Mflop to an
asymptotic performance of 147 Mflop (see below).

The Cray-lS is perhaps not the ideal machine for comparing FORTRAN and
assembler performance. Store access conflict problems together with chain-slot
loss left much to be desired for the FORTRAN user. Although these effects have
been largely remedied on the XMP-1, reliance on FORTRAN still leaves the user
unable to take advantage of hiding scalar control activities under vector
operations. The situation is less clear on the multiprocessor XMP-n, where store
access conflict problems in the case of a general code implemented at the large
granularity level would be exacerbated by the generation of redundant store/fetch
operations.

While the 205 is potentially an ideal FORTRAN machine, similar problems
remain because of deficiencies in the current FORTRAN compiler. Many of the
typical loops in QC software involve items from argument lists, and as such
inhibit automatic vectorisation using the FORTRAN 200 Compiler, given the
requirement for a vector length "known" to be less than 65536. Since use of the
"UNSAFE vectorisation" option commonly led to miscompiled code, the strategy
of building a META library of FORTRAN callable routines was adopted. Such
a philosophy is in line with using the mathematical subroutine library of the
FPS-164, which includes FORTRAN callable subroutines written in optimised
assembly language to perform, amongst others, vector and matrix operations.
The typical improvement figures arising from use of this library have been
documented by Dunning and co-workers [2], and are reflected in the timings
quoted in Table 1 for various standard vector operations.

The above discussion raises the obvious question as to what order of operation
should this reliance on factored routines be instigated. It would seem clear that
factoring of code should occur at the N 2 / N 3 level, e.g. MMO, matrix square,
diagonalisation, etc.; i.e. where there is a clear potential for taking advantage of
the interplay between loop lengths. Indeed the prospects for large scale granularity

Table 1. APMATH64 versus FORTRAN (OPT = 3) CPU times (seconds) for various standard vector
operations, involving 1000 calls with a vector length (VL) of 50

Mode Vector routine

SDOT SAXPY SCALE COPY ADD
Out-of-line FORTRAN 0.040 0.051 0.042 0.038 0.067
In-line FORTRAN 0.032 0.041 0.031 0.031 0.060
APMATH/APAL 0.027 0.037 0.026 0.025 0.037
Break-even VL over FORTRAN 40 35 20 20 10
VL for 90% full speed 90 100 70 70 80

Computat ional chemistry on FPS-X64 computers 123

may well be at this level. Factoring at order N, however, is more debatable; in
cases where one cannot guarantee the magnitude of N (i.e. where the compiler
will use a given algorithm regardless), or where one is dealing with non-vectorised
code, then again factoring may appear beneficial, to accommodate alternative
optimisation techniques e.g. loop folding. Factoring at the N-level is not, however,
in general recommended, except perhaps where all of the loop may be represented
by a single CALL to the library utility. Obviously the larger the library, the more
likely this condition would be satisfied. An attempt to widen the range of the
Basic Linear Algebra Subroutines (BLAS) might encourage such factorisation.

As an exampIe of the clear advantages to be gained from factoring routines at
the N 2 / N 3 level, we present in Table 2 the results of a matrix diagonalisation
benchmark intended to supplement the previous analysis conducted by Dunning
and co-workers [2]. We consider a similar benchmark, based on diagonalising a
series of real symmetric matrices, with rank 10, 20, 30, . . . , 100, using 64-bit
floating point arithmetic. Again the CPU time was measured for the diagonalisa-
tion of each size matrix and a weighted sum of these CPU times used as the
benchmark execution time. Each matrix of rank N contributed to this sum as
(100/N) 3 • CPU [2]. While the previous analysis was restricted to the EISPACK
RS routine, we consider below the performance on the Cray-lS, FPS-164 and
Cyber-205 (2-pipe) of nine diagonalisation routines available in various mathe-
matical libraries and quantum chemistry codes:

(i) .The library routine RS available in APMATH64 on the FPS-164 and in
SCILIB on the Cray-lS (optimised FORTRAN).

Table 2. Matrix diagonalisation benchmark. Total CPU time (seconds) as a weighted function of the
time necessary to diagonalise ten real symmetric matrices (see text)

CPU time

FPS-164

Source/ OPT(4)
Routine library Cray-lS OPT(l) OPT(3) ONETRIP Cyber-205

Householder
RS APMATH64/

SCILIB 6.8 32.6
EIGRS IMSL 10.2 117.2 79.9 78.0 24.4
HQRII MOPAC 14.4 96.2 45.9 43.2 21.6
HOUSE - - 24.1
F02ABF NAG 6.0 73.3 16.2
SDIAG2 8.3 107.7 76.2 74.0 23.7

Jacobi
JACOBI ATMOL 20.8 139.2 114.0 111.9 32.1 a
E R D U W BERKELEY 27.6 160.1 122.1 121.5 33.3
JACO DISCO 116.9 675.6 432.3 416.1 126.3

a(Meta 15.7 s) FORT R AN 200, cycle L640A

124 M.F. Guest et al.

(ii) EIGRS, an unoptimised FORTRAN version of RS from the IMSL library
of routines [9].

(iii) F02ABF, from the NAG library [10].
(iv) HQRII [11], as implemented in the semiempirical MOPAC program [12].
(v) HOUSE, a locally written APAL version of HQRII employing table memory

in the tridiagonalisation and MAX boards in the back transformation.
(vi) SDIAG2, as implemented in the MUNICH system of programs.

These routines are all based on the Householder QR method. We also consider
the performance of the following Jacobi diagonalisers:

(vii) JACOBI, from the ATMOL system of programs [13].
(viii) JACO, the diagonalisation routine from the direct-SCF program DISCO

[14].
(ix) ERDUW, as taken from the Berkely System of Quantum Chemistry codes.

As noted by Dunning, a call to the APMATH library RS routine improves the
FPS-164 time by a factor of 2.5 over the FORTRAN equivalent code (EIGRS),
although the performance of the FORTRAN coded HQRII on the FPS should
be noted, 75% of the speed of the APAL routine and almost twice as fast as the
next best FORTRAN code (F02ABF). HQRII is also the most efficient FORTRAN
routine o n the host AS-7000, but is the slowest Householder routine on the
Cray-lS.

Improvements with pipelining on the FPS are rather disappointing, with the
factor of 2.2 achieved by HQRII far greater than that of the other routines. In
fact FORTRAN on the FPS is only marginally better than on the AS-7000, with
factors between 1.1 and 1.4, a further reminder that replacing FORTRAN sub-
routines with calls to the standard APMATH routines provides an essential step
in realising the full potential offered by the FPS-164. We are unable to explain
the exceedingly poor performance of the Jacobi diagonaliser in DISCO, a feature
on all machines.

Finally we consider the performance of our MAX-compatible routine HOUSE
operating on larger matrices. For a matrix of rank 240 HOUSE requires 8.5 s, to
be compared with 28.7 s for the APMATH EIGRS routine. For such matrices
the FPS-164/MAX is approximately 92 times faster than the ubiquitous VAX-
11/780.

3.2. Disk I / 0

Quantum chemistry is, of course, a subject with a notoriously high demand on
I/O devices, both in terms of I/O rate and data capacity. The computational
chemist will always be faced with the headache of trying to reduce I/O charges,
and the optimum way of achieving this is often a function of both machine and
installation. However, the design of any I/O system for quantum chemistry must
always feature asynchronous activities with the maximum size of data transfer
permitted, and by implication will require a large amount of available memory
for coordinating this activity. On the Cyber-205 our present I/O system, utilising

Computational chemistry on FPS-X64 computers 125

the maximum unit of data transfer (12K words using small page transfers), acts
to improve the I/O efficiency of certain stages of computation (and subsequent
cost) by a factor of ten or more. The development of an efficient I/O system for
the FPS-164 has been outlined in [2].

We note here a similar behaviour to that found on the Cyber when performing
asynchronous I/O to the D64 and FD64 disk subsystems on the FPS. Table 3
presents the elapsed times and associated transfer rates observed in migrating
40 MBytes of data asynchronously to an FD64 800 MBytes disk, as a function
of the unit of data transfer. Increasing this unit from 0.5K to 20K words is seen
to improve the I/O efficiency by a factor of 7, although even with 20K word
transfers performance falls short of the 1.8 MBytes/s theoretical maximum. We
are currently unable to explain this rather poor performance, which may well be
a local characteristic of the Daresbury set-up.

3.3. Role o f the M M O

As has been mentioned previously the electronic structure problem can be
formulated such that the MMO

R = A B

where perhaps A or B (but not both) is sparse, is of fundamental importance
for five steps in a typical calculation

(i) 2-electron integral evaluation over Gaussian functions [15, 16]
(ii) Hartree-Fock construction of a non-correlated wavefunction [17]

(iii) Transformation of the 2-electron integrals from an atomic to a molecular
orbital basis [18]

(iv) The construction of a correlated wavefunction using the DIRECT-CI tech-
nique [4, 19]

(v) The multiconfiguration SCF construction of a correlated wavefunction [20].

Details of an optimised MMO routine (MXMB) written in assembly language
for the Cray-lS, using the "outer product" formalism and capable of utilising

Table 3. Disk I/O benchmark total elapsed times (seconds) and associ-
ated I/O rates for the transfer of 40 MBytes of data, as a function of
the unit of transfer

Unit of transfer Total elapsed time Transfer rate
(KWords) (s) (MBytes/s)

0.5 280 0.14
1 140 0.28
2 105 0.38
4 70 0.58
5 57 0.70

10 44 0.86
20 40 1.00

126 M.F. Guest et al.

any sparsity in A or B, have been given previously [3]. Execution rates in excess
of 100 Mflop are possible on the Cray with matrix dimensions (vector length,
VL) as low as 24, the routine achieving an asymptotic performance of 147 Mflop
when a dimension of 64 is used (or any multiple thereof), correlating with a
hardware characteristic of the Cray. The performance of a straightforwardly
coded vectorised FORTRAN version is in marked contrast, being asymptotically
only 37 Mflop with very large matrix dimensions (see Fig. 1 of [3b]). Note that
the direction of vectorisation in the sparse MMO depends upon which matrix is
assumed sparse, so that one should vectorise by rows or columns of the result
matrix, depending upon whether A or B, respectively, is assumed sparse.

It is perhaps worth recalling at this point the Mflop rate for the hierarchy of
preferred operations relevant'to the machines under discussion:

Cyber-205
Cray-lS 2-pipe FPS-164

Recursive linked triad (MMO) 147 200 9.6
Recursive linked triadic 49 200 4
Recursive linked diadic 38 100 2.5

Effectively the full potential of the FPS-164 in the sparse matrix multiply may
be obtained directly through use of the APMATH library routine SMMMV (see
[2b]).

A consequence of the increased vector startup times on the Cyber-205 is, of
course, the requirement for a significantly longer VL if optimal performance is
to be achieved. Thus MMO rates of 100 Mflop on a 2-pipe 205 require a matrix
dimension of 170, and illustrate the need for an alternative "long vector" algorithm
for small matrices. Such an algorithm [21], comprising a hybrid scheme of dyadic
operations, matrix transposition and bisection techniques outperforms the outer
product algorithm by a factor of two for matrices of dimension 20 on a 2-pipe
machine, where it rapidly achieves an asymptotic performance of 45 Mflop.
Indeed this algorithm can outperform the hardware inner product order on a
4-pipe machine.

A comparison of the sparse MMO performance on the Cray-lS, FPS-164, Cyber-
205 (2-pipe) and ~ - 7 0 0 0 is given in Table 4. In this benchmark a series of
MMOs involving "~-matrices of rank 10, 20, 30,.... , 100 were performed. Each
MMO was performed a number of times, this number being inversely proportional
to the rank, so that the summed CPU times of Table 4 refer to 100 MMOs for
rank 10 matrices, 90 for rank 20 matrices, and so on up to 10 MMOs for matrices
of rank 100. Figures are presented for both "full" (0% sparse) and 50%-sparse
B matrices, and in each case a comparison is drawn between the performance
of code written entirely in FORTRAN and that in assembly language.

For FORTRAN implementation, the sparse-MMO on the Cray-lS is 10.6 times
faster than the FPS-164 when handling non-sparse matrices, and 9.1 times faster

Computational chemistry on FPS-X64 computers

Table 4. Sparse MMO benchmark. Total CPU times (seconds) for a series of sparse
MMOs (R = AB, see text) implemented in FORTRAN and assembly language

127

Sparsity in B-matr ix

0% 50%

F O R T R A N
AS-7000 a 103.5 52.9
FPS-164 (OPT = 3) b 60.4 32.8
Cyber-205 (OPT = DPRS) f 19.2 10.2
Cray-lS ~ 5.7 3.6

Assembly language
AS-7000 99.0 49.4
FPS-164 (SMMMV) 17.4 11.7
FPS-164/MAX-3 d FULL (PDOT) 8.9 8.9

FULL (PMMUL) 4.9 4.9
SPARSE 6.4 4.9

Cyber-205 MXMB 2.9 1.6
Cray-lS MXMB 1.4 0.7

MXMA e 1.2 1.2

FORTVS, level 1.4.1, with O P T = 3 and AUTODBL(DBL)
b APFTN64, F02-00

COS 1.12
d See text

SCILIB
f F O R T R A N 200, cycle L640A

in the sparse matrix case. The FPS-164 is faster than the AS-7000 in both cases,
by factors of 1.7 and 1.6 in the non-sparse and sparse case, respectively.

Comparing assembly language MMO to FORTRAN MMO, the APMATH library
routine SMMMV is of order 2.8-3.5 times faster, and the Cray-1S MXMB 4.1-5.1
times faster with assembly language implementation, the factor depending on
sparsity. Indeed these assembly language timings reflect the asymptotic perform-
ance of the machines, with the Cray-lS 16.7 times faster than the FPS-164 in the
sparse-MMO.

The FPS-164 sparse MMO routine SMMMV is 4.5 times faster than FORTRAN
implementation on the AS-7000 when operating on sparse matrices. Compared
to supercomputer FORTRAN implementation, SMMMV is comparable in speed
to the Cyber, and three times slower than the Cray-lS.

Our initial approach to utilising the MAX capabilities of the machine has centred
on coding an efficient FPS/MAX sparse MMO routine, SPARSE, The code
initially invokes an APAL routine to pack the sparse matrix in blocks prior to
invoking a second routine to drive the MAX.

The sparse dot product runs at full speed on the MAX but cannot, due to extra
overhead from unpacking the MD vector, use Table Memory. Thus the limiting
speed of a sparse dot product on an FPS-164/MAX-n is 22n Mflops. A non-sparse

128 M.F. Guest et al.

algorithm would limit to (22n + 11) Mflops, although naive use of the APMATH-
MAX basic library routines as the kernel of a FORTRAN MMO produces an
unacceptable level of subroutine call overhead for all but very large matrices.
The finite dimensions of MAX vector memory, MD scratch work space and
conflicting requirements to reduce packing and loading overhead, further limit
the peak theoretical performance of a sparse MAX matrix product to 54 Mflops
on 3 boards. The achieved rate of the MAX sparse MMO in the benchmark of
Table 4 reflects the performance envelope of the benchmark, which peaks at
matrix rank of 80. A significantly larger vector length would be required to
approach asymptotic performance. With 50% sparsity and matrix rank of 400,
SPARSE is 4.5 times faster than the library routine SMMMV.

4. An ab initio computational chemistry system

The vector implementation of five of the steps in a typical Quantum Chemistry
calculation leads to the efficient computation of the total energy of a given
molecular species at a fixed nuclear geometry. Chemistry, however, is not concer-
ned merely with the properties of a molecule at a single point, but with the more
general characteristics of multi-dimensional potential energy surfaces, with a
quantitative account of the making and breaking of chemical bonds crucial in
the study of reaction mechanisms. Ideally we wish to move automatically, and
systematically, on a surface from one stable molecular geometry, through one or
more transition states, onto a product equilibrium geometry. Such a "walking
process" became viable with the development of efficient methods for calculating
gradients of the molecular energy [22], together with the evolution of robust and
efficient algorithms for locating minima and transition states based on first- and,
more recently, second-derivative information.

The complexity and sheer size of the programs required in such studies presents
a formidable task for the computational chemist. Such a code must include, in
addition to the optimised steps above, routines for the evaluation of the energy
derivative for a broad class of wavefunctions of increasing complexity, involving
computation of the derivatives of the one- and two-electron integrals. All such
steps reside under control of optimisation routines designed to locate and charac-
terise the stationary points on the potential surface in the minimum number of
energy and energy-gradient evaluations.

These programs are potentially vast consumers of both machine cycles and the
more general resources of memory, disk space etc. Much of the 300 hours of
Cray-1 time allocated by SERC to users in the QC community in the period
1983-4 was consumed through use of these codes. It is estimated that the
equivalent computations on the AS-7000 at Daresbury would have required at
least 5000 h, effectively the entire machine. Some 20-30% of the current VP usage
at the University of London Computer Centre (ULCC) and the University of
Manchester Computer Centre (UMRCC) is taken up by Quantum Chemistry
calculations.

Computational chemistry on FPS-X64 computers 129

Work in this area at Daresbury has concentrated on the GAMESS program
(General Atomic and Molecular Electronic Structure System), a 200 000 line
general purpose ab initio molecular electronic structure program for performing
SCF- and MCSCF-gradient calculations [23]. The program utilises the Rys
Polynomial or Rotation techniques to evaluate repulsion integrals over s, p and
d type Cartesian Gaussian orbitals. Open- and closed-shell SCF treatments are
available within both the RHF and UHF framework, with convergence controls
provided through a hybrid scheme of level shifters and the DIIS method [24].
In addition generalised valence bond (GVB), CASSCF and more general MCSCF
[20] calculations may be performed.

The analytic energy gradient is available for each class of wavefunction above.
Gradients for s and p Gaussians are evaluated using the algorithm due to Schlegel
[25], while gradients involving d Gaussians utilise the Rys Polynomial Method.
The recent incorporation of gradient pseudopotential capabilities also promises
to significantly extend the size of system amenable to study. Geometry optimisa-
tion is performed using a quasi-Newton rank-2 update method, while transition
state location is available through either a synchronous transit [26] or trust region
method [27]. Force constants may be evaluated by numerical differentiation.
Large scale multi-reference CI calculations may be performed using the Direct-CI
formalism.

A variety of wavefunction analysis methods are available, including population
analysis, localised orbitals, graphical analysis and calculation of 1-electron
properties.

4.1. Implementation of GAMESS on an FPS-164

As an example of the typical problems encountered in migrating code from
processor to processor, we consider our implementation of the GAMESS package
on the FPS-164. Some of the problems that arose in converting the Cray version
of the code are outlined below (see also [2]):

(i) A potential problem is the use of non-standard data types - INTEGER*2,
LOGICAL*I - in common blocks and equivalence usage. Due account of
these effects had been taken during Cray implementation of the code.

(ii) Use of extended DO-loops
(iii) Use of Hollerith data types instead of charactertype data. Most QC programs

are written in FORTRAN-4, but nevertheless compile successfully with
FORTRAN-77 compilers, with the aid of various language flag options etc.
Yet it was felt timely, given the general requirements of APFTN64, to
undertake the task of converting the entire code to a FORTRAN-77 standard,
at least as far as character type data was concerned. This conversion took
approximately 2 weeks to carry out, involving, for example, major changes
to the free-format data input routines.

(iv) Use of dummy arrays that are not initialised on the most recent entry into
the subroutine.

130 M.F. Guest et al.

(v) The most serious problem encountered, and one that took several months
to resolve, involved implementation of an efficient direct access asyn-
chronous I/O system (see Sect. 3.2). Both the Cray and Cyber versions of
the code rely on a multi-buffered I/O system based on the fundamental
building block of 512 words (the Cray block). Typically multiple blocks are
written under control of a single output statement (using, for example, the
Q5 routines on the 205), but may be subsequently processed through multiple
read commands. Attempts to conform to this structure using the asyn-
chronous I/O facilities within APFTN64 revealed intolerable elapsed/wait
times. The initial solution to this problem involved basing the I/O system
on the FILES routines (vol. 3 of the Operating System Manual Set), a
collection of FORTRAN callable routines providing far greater flexibility
than their FORTRAN-77 counterparts.

(vi) The initial 1/2 MWord configuration on the Daresbury machine provided
a potential constraint on the systems amenable to study. The amount of
available memory has been optimised in two ways:
(a) In common with most QC codes, GAMESS features a large array which

is partitioned and passed to subroutines in segments, the space require-
ments for each segment depending on the chemical system under investi-
gation. Access to such an array on the FPS is achieved through use of
the/SYSSMD/ common block and SYSSADDMEM routine to define
the first usable location in the program workspace.

(b) The space requirements of the code itself have been minimised by
extensive use of the flexible OVERLAY features of APLINK64.

4.2. Performance of G A M E S S on an FPS-164

In the present section we consider the performance of the GAMESS program
on the FPS-164, Cray-lS and Cyber-205. Three separate calculations are con-
sidered. In Tables 5 and 6 we list the CPU times for the various steps in calculations
on the Till4 molecule. The first calculation (see Table 5) involved the evaluation
of the one- and two-electron integrals over a contracted Gaussian basis of 76
functions, followed by an SCF calculation. The optimised orbital space was then
transformed to a 67 orbital basis (with the Ti ls, 2s, 2p, 3s and 3p orbitals frozen),

Table 5. FPS-164 and Cray-1S performance comparison for a 2nd-order CI calcula-
tion on Till 4 (see text) using GAMESS

CPU time (seconds)
CPU ratio

Description FPS- 164 Cray- 1S FPS/Cray

Integral generation 305.2 54.6 5.6
SCF optimisation 90.1 23.0 3.9
Integral transformation 1071.0 98.8 10.8
CI diagonalisation ~
Cycle time (775742 csf) 1446.1 198.3 7.3

a Convergence achieved in 10 iterative cycles

Computational chemistry on FPS-X64 computers 131

and a full second-order CI wavefunction calculation performed, involving 8
valence electrons distributed in 10 orbitals (4al, 3t2, 4t2 and 5t2), yielding a total
of 775, 742 configuration state functions (csf's), conducted within the direct-CI
framework.

The integral generation step is 5.6 times faster on the Cray then on the FPS-164,
and the SCF step 3.9 times faster. Both integral transformation and direct-CI
steps show increased factors arising from the dominant role played by the sparse
MMO. The factor of 11 in the transformation step would undoubtedly be repeated
in the CI phase given an increase in the external space employed in the present
calculation. The observed factor of 7.3 stems from an external space of just 57
functions. Note that on the current MAX implementation, the SCF and transfor-
mation times of Table 5 are reduced to 84.4 and 553.8 s respectively, with the
SCF step now 3.7 times faster on the Cray-lS and the transformation step 5.6
times faster.

In the second calculation (Table 6) we consider the performance of the 2nd-order
direct-MCSCF module [20]. The timings refer to a more modest basis of 46
functions, and are given for integral generation, SCF, symmmetry adaptation
(via a pseudo-transformation) and a CASSCF calculation, with 8 electrons in 12
orbitals, yielding a total of 17 945 csf's. Referring to the CASSCF step, we find
the Cray-lS to be 8 times faster than the FPS-164, and the Cyber-205 (1-pipe)
only 2.2 times faster.

The final benchmark (Table 7) contrasts the performance of GAMESS with that
of the CADPAC and ATMOL program suites in performing a routine 91 basis
function 3-21G SCF calculation on the nitrobenzene molecule (C2v symmetry).
Considering GAMESS, we again find the integral generation step to be 5.0 faster
on the Cray-lS than on the FPS-164, and the SCF step 5.2 times faster. GAMESS
is well suited to this type of calculation, with the increased speed factors against
CADPAC and ATMOL in integral evaluation derived from use of the rotated
axis technique rather than Gauss-Rys quadrature. Two factors account for the
increased performance in the SCF step. With the present DIIS implementation,
GAMESS converged in 15 iterative cycles, whilst both ATMOL and CADPAC
required manual intervention, arising from inappropriate starting vectors, and

Table 6. GAMESS machine performance comparison for a CASSCF calculation on
the Till 4 molecule (see text)

CPU time (seconds)

Description FPS- 164 Cray- 1S Cyber-205 a

Integral generation 115
SCF optimisation 23
Symmetry adaptation 80 9 20
17,945 csf-MCSCF 2691 345 1184

a 1-pipe at SARA, Amsterdam

132

Table 7. FPS-164, Cyber-205 and Cray-lS performance comparison in an
SCF calculation on the Nitrobenzene molecule (see text)

M. F. Guest et al.

CPU time (seconds)

Program FPS-164 Cray-lS Cyber-205a

2-electron integral evaluation
GAMESS 199 40 (16) b 72
CADPAC - - 114 208
ATMOL 1436 297 375

SCF wavefunction optimisation
GAMESS 188 36 105
CADPAC - - 87 228
ATMOL 3200 248 600

a 2-pipe, Manchester
b Vectorised rotated axis integrals

needed significantly more iterations tO achieve convergence. Both GAMESS and
CADPAC use in default the P-supermatrix, while ATMOL uses integrals directly
in the SCF step. Although these timings may thus appear somewhat biased, they
were obtained using the facilities available within the standard version of each
program on the parent machine, and clearly show that GAMESS has a majo~
role to play in SCF calculations on large systems with s, p basis sets.

4.3. Performance of the FPS-264

To provide some idea of the improvement to be expected on the newly-released
FPS-264, we include in Table 8 the overall timings obtained in optimising the
geometrical structure of chromium tetranitrosyl, Cr(NO)4, using a double zeta
basis of 110 functions [28], The table shows the breakdown of this gradient

Table 8. Performance of the FPS-164 and FPS-264 in computational
chemistry. A geometry optimisation of Cr(NO) 4 (see text)

CPU times (seconds)

Step FPS- 164 FPS-264

Input phase 3 1
Vector generation 11 3
1-electron integrals 104 30
2-electron integrals 4221 1192
SCF 2153 622
1-electron gradient integrals 559 167
2-electron gradient integrals 8845 2582
Wavefunction analysis 44 12
Other 12 3

TOTAL CPU seconds 15952 4612

Computational chemistry on FPS-X64 computers 133

optimisation into component parts, and contrasts performance on FPS-164
(release F1.0) and FPS-264.

The increased performance of the 264, by a factor of 3.5, suggests that the impact
of this machine from Floating Point Systems on computational chemistry will be
just as marked as its predecessor. Note that this benchmark involved migrating
the executable load module directly from 164 to 264, and does not reflect the
possible improvement to be obtained from 264 specific software.

4.4. Towards open-ended ab initio capabilities

At first Sight the N 4 I /O and storage problem seems to present an insuperable
constraint upon ab initio calculations. Although integral storage limits to a n N 2

problem for very large molecules, one does not see this behaviour in practice
except for extended systems, such as a long polymer chain. Even then the number
of integrals remains prohibitive for this effect to become appreciable. Clearly a
radical rethink of the conventional approach is required to permit the routine
examination of molecular systems comprising, say, more than 30 heavy atoms.
The novel direct-SCF algorithm due to Almlof [14] seems to provide a viable
alternative, and we have implemented such techniques within the GAMESS
package.

The philosophy of direct-SCF is not to store the integrals, but tO calculate them
as required on each SCF iteration, thus eliminating virtually all I /O from the
SCF, at the expense of increased CPU requirements. The only constraint upon
the dimension of a calculation, N, is the amount of CPU time available, and the
dimension of real machine memory (presently 3 N 2 words, plus program source).
An obvious prerequisite to an efficient implementation of this algorithm is a
highly optimised integral package. The importance of this is readily demonstrated
by comparing the iteration times of GAMESS (169 s) and the original program
due to Almlof (576 s) in a small 91 basis function test calculation on the nitroben-
zene molecule run on the FPS-164.

Two sets of calculations performed by us on the FPS-164 at Daresbury illustrate
the applicability of the method to large systems, and suggest that extensive
calculations may be conducted given a suitably configured, dedicated local
facility, thus obviating the need for time-shared access on a large supercomputer
facility (e.g. a Cray or multi-AP system).

Firstly, we have optimised, in a 300 function, STO-3G basis set, a sixty atom
icosahedral carbon cluster (Buckminsterfullerene or footballene [29]), using
direct-SCF and analytic gradients. This cluster is of current experimental interest
and has been the subject of several semi-empirical calculations [30]. Our resulting
geometry is in agreement with that of reference [30b]. The direct-SCF used 980 s
per iteration, while evaluation of the one- and two-electron derivative integrals
required 7500 s. Storage of t.he symmetry unique integrals in a conventional
calculation would have required about 0.2 GByte of disk space. More significant
is our 540 basis function split-valence 3-21G calculation upon the same cluster.
The direct-SCF used 4500 s per iteration. A conventional treatment would have

134

Table 9. A computational physics and chemistry benchmark

M. F. Guest et al.

CPU times (seconds)

Code Subject area FPS-164 FPS-264 Cray-lS
Time ratio
FPS-164/Cray

GAMESS 1006 301 116 8.7
MULTI Computational 2691 765 345 7.8
DISCO chemistry, CCP1 1127 208 5.4
MOPAC 481 178 120 4.0
MDTEST Molecular Dynamics CCP5 502 132 43 11.6
CASCADE Lattice defects, CCP5 287 84 29 10.0
LMTO Electronic structure of

solids, CCP9 482 134 3.6

filled our present disk system (1.8 GBytes), and produced an iteration time of
2400 s (approximately 2000 s I / O transfer time plus 800 s CPU partially over-
lapped with the I /O) .

5. Cost effectiveness of the X64 scientific computers

In the preceding sections we have outlined the implementation and performance
of various computat ional chemistry codes. In the process of evaluating the
performance of a computer, the ultimate criterion is centred on its ability to
handle production work. In the present section we compare the performance of
7 codes taken from the various subject areas supported by the Collaborative
Computat ional Projects (CCPs), these codes being in routine use on the Cray-lS
at ULCC and on the FPS-164 at Daresbury. The timings of Table 9 refer to
typical production jobs (see Appendix I).

Note that all CPU timings presented above refer to the FPS-164 itself, and were
obtained prior to the FPS-164/MAX upgrade. The impact of this upgrade on the
benchmark will be reported at a later date.

6. Parallel processing and computational chemistry

"Parallel processing" is exhibited in various ways in the present generation of
scientific computers. Array processors use several arithmetic elements (adders,
multipliers, arithmetic-logic units) to increase performance. Vector processors
combine the arithmetic elements of array processors with pipelining techniques
and high-speed electronic components for the hundreds of Mflops performance
claimed for these machines. One attractive way to improve performance is to
make use of parallel processing by embedding specialised co-processors in an
existing high-speed machine, with the provision of software support to enable
the user to express the parallelism where appropriate. This is exemplified in the
FPS/164-MAX system, where the Matrix Algebra Accelerator (MAX) modules

Computational chemistry on FPS-X64 computers 135

are integrated into the established FPS-164 architecture through memory map-
ping, and are directed by the CPU to perform any one of a fixed set of linear
algebra operations. The MMO based algorithms (Sect. 4) of quantum chemistry
are well placed to take advantage of such co-processors.

Before discussing our own experiences in the parallel implementation of quantum
chemistry software in Sect. 7, we briefly outline the options available in parallel
architectures, and consider the appropriateness of each from the standpoint of
computational chemistry.

The phrase "parallel processing" will hereafter be used to refer to the use of
multiple processors to speed up the execution of a single program, in contrast
to methods designed to improve processing of a random job load (statistical
parallelism, multiple streams of independent jobs; systolic parallelism, or pipe-
lined subprograms). In assessing the ease of migrating any application code from
a sequential to a parallel environment, we need consider the following:

(i) Can the computation be parallelised asynchronously in "large sections", i.e.
at least at the subroutine level, where the parallel part involves decomposing
the domain of the problem, and letting each processor work on a different
part of the problem. This domain decomposition is "coarse-grain" parallel-
ism, and would appear vital in realising the full potential of any multi-
processor system. Compilers will not be able to recognise this type of
parallelism, at least in the near future, and intuitively coarse-grain parallelism
will act to minimise communications between parallel processors.

(ii) How frequent and time consuming are the necessary communications
between parallel processes? What is the operating system overhead in
initiating such communications?

(iii) How evenly can the work be distributed between any number of processors?
Such an even distribution is clearly required in achieving maximum
efficiency.

(iv) How crucial is the architectural feature of each processor being connected
to a common (or shared) memory?

6.1. Extremes in multiprocessor philosophy

In Spite of the performance increases achieved through pipelining and vectorisa-
tion, supercomputers are reaching the limits of their capabilities. However
sophisticated its design and however fast its components, a single processor
supercomputer eventually reaches limits imposed by fundamental electrical
properties - switching speeds and propagation delays.

The answer to improving supercomputer performance lies in concurrent architec-
tures. Concurrency is a high level or global form of parallelism, denoting indepen-
dent operation on a collection of simultaneous computing activities. A concurrent
MIMD (multiple instruction-multiple data) machine thus uses loosely coupled,
multiple, interacting processors to perform many operations at once. Concurrency

136 M.F. Guest et al.

contrasts with other forms of parallelism, such as pipelining and multiple func-
tional elements. These forms imply some form of lock-step control, which ulti-
mately limits the expandability and performance of a system. Concurrency allows
expansion to a larger number of processors because of the flexibility afforded by
distributed memory, distributed control and loose coupling.

Two of the approaches being taken to implementing parallel supercomputers are
considered below.

6.2. Multiple vector or attached processors, M V A P

MVAP architectures are obtained by coupling two or more standard supercom-
puters (or attached processors) together, typically to a common fast memory, as
has been done by Cray Research with the X-MP series. Cost considerations,
together with the use of shared memory in these and similar systems, ultimately
limit the number of processors that can be connected: communication overhead
and Amdahl's law suggests a limit of 16 co-operating processors.

Partridge and Bauschlicher [6b] have considered on a two-CPU Cray X-MP the
multiprocessor implementation of algorithms for (a) sparse symmetric matrix-
vector product, (b) four index integral transformation, and (c) calculation of
diatomic two-electron Slater integrals. They demonstrated the considerable degree
of parallelism inherent in present algorithms that can be readily exploited, but
suggest "considerable algorithmic development will be required for some steps
(MCSCF and CI) to reduce network traffic, particularly on non-shared memory
architectures".

The most impressive and comprehensive investigation of MVAP parallelism in
computational chemistry is provided by the on-going experimental parallel super-
computer system, called LCAP (loosely coupled array of processors), developed
by Clementi and co-workers at IBM Kingston, New York [6]. The initial LCAP
system, LCAP-1, consisted of 10 FPS-164 scientific computers (seven attached
to an IBM 4381 host and three to an IBM 4341), the FPS-164 processors being
coupled to the IBM hosts through standard IBM 3 Mbyte/s channels. Numerous
examples taken from quantum mechanics, molecular dynamics and Monte Carlo
have demonstrated the high degree of parallelism obtainable in all three disci-
plines [31, 32]. Our own experience in adapting quantum chemistry codes to the
corresponding LCAP system at the IBM Scientific Centre in Rome, Italy, is
considered in Sect. 7 below.

The LCAP system at Kingston is continually being upgraded in response to the
experiments conducted thereon [32]. The IBM 4381 and 4341 hosts have been
replaced by an IBM 3081 and 4383, while each FPS-164 has been upgraded to
an FPS-164/MAX-2. Attempts to increase the flexibility of LCAP include the
provision of a bus connecting the APs and five shared bulk memories, forming
two rings for further communication from AP to AP. The need for such extensions
provides a further reminder that applications of either limited granularity or

Computational chemistry on FPS-X64 computers 137

requiring heavy AP- to AP-data transfer may require considerable algorithmic
development to be viable on non-shared memory architectures.

Workers at Kingston have recently instigated work on a second configuration,
LCAP-2, comprising 10 FPS-264 processors using an IBM 3081 as front end
processor. We await with interest a comparison of the performance of LCAP-2
with, say, a Cray X-MP/48.

6.3. Concurrent micro-processors, CMP

A more practical approach to implementing supercomputer capabilities uses a
large number of today's most economical computational element, the microcom-
puter, made feasible by the rapid enhancements in performance and cost advances
achieved through VLSI processors. Numerous university research programs have
focused on micro-processor based approaches to large-scale computing e.g. the
Cosmic Cube at MIT [33], the V2/64 at Waterloo [34], DADO and VFPP at
Columbia [35, 36] and the MMCE at Carnegie Mellon. When the concepts of
distributed memory, distributed control and connected networks are used with
concurrent computing architecture, there are few practical limits to the number
of processors that can be linked to form a supercomputer system. Considering
the application of such CMP systems to quantum chemistry codes, we immediately
find the following requirements:

(i) 64-bit floating point capabilities, with vector arithmetic pipelines available
on each of the processors.

(ii) If, in the interests of scalability to a large number of processing nodes, we
are to forsake use of shared memory, and thus migrate to distributed memory
systems based on a limited form of interconnection, we clearly need to quantify
at the outset the minimum high-speed store requirements of each node. Bearing
in mind the crucial role of memory in achieving both vectorisation and efficient
I /O performance, it is clear that an inadequate high-speed node memory may
well prove the Achilles' heel in adapting quantum chemistry codes to CMP
architectures.
(iii) MIMD architectures that use message passing rather than shared storage
for communications between the nodes are alleged to provide increased efficiency
compared to memory-sharing schemes. The choice of communication protocols
by which messages and data are exchanged will clearly affect the performance
of a concurrent algorithm: intuitively we require asynchronous message passing
capabilities, for use of synchronous protocols would almost certainly lead to
significantly slower performance.
(iv) Each node should be able to directly access its own disk storage. Provision

of, say, 1 GByte of disk-store/node would undoubtedly act to lessen the need
for very-high message passing capabilities between component nodes.

(v) A crucial consideration in assessing available options is that of cost. Most
of the supercomputers available today (from manufacturers such as Cray, CDC,
etc.) lay in the $5 million to $15 million price range. The ultimate aim of a CMP
based system must be to bring the computer-power associated with the more
traditional supercomputer architecture into the price range affordable by a single

138 M.F. Guest et al.

(university) group. In the search for cost-effectiveness, we shall, rather arbitrarily,
confine our attention to systems costing 10% of this figure, i.e. in the $0.5 million
to $1.5 million range.
(vi) The software investment to date in FORTRAN-based codes on both scalar

and vector machines strongly suggests that FORTRAN remains the application
programming language. While the definition of concurrent processing problems
may be more easily accomplished through alternative languages, this would lead
to massive conversion requirements and a total lack of continuity with past,
present and future serial and MVAP machines. These are unacceptably high
prices to pay.
(vii) If configuring a CMP system with the mode attributes outlined above proves
cost prohibitive, then downgrading some of the nodes in heterogeneous fashion
would still leave QC applications well placed to take advantage of the techniques
developed in an MVAP framework.

6.3.1. Available CMP systems. Two commercially available systems promise to
satisfy many of the requirements outlined above, the FPS Tesseract from Floating
Point Systems, and the iPSC-VX from Intel. Both systems are based on the binary
n-cube interconnect scheme developed by Seitz and Fox [33, 37]. The advantages
of the hypercube topology include:

(a) It provides the option to expand to larger, more powerful systems as needs
increase or VLSI-component technology improves. Both the FPS and Intel
implementations provide the potential for open-ended architectures in con-
trast to other approaches, such as shared memory and buses, which are
limited in the extent to which they can be expanded.

(b) The hypercube offers high communications efficiency and communications
capabilities that closely match the needs of real problems.

Returning to the original criterion of price, we find that both the iPSC-VX/26
(peak performance of 424 Mflops (64-bit) or 1280 Mflop (32-bit)) and the FPS
T-40 (peak performance of 512 Mflop for 64-bit arithmetic) lie comfortably within
our suggested price range. Both offer some 50% of peak Cray X-MP/48 perform-
ance. Such comparisons based on peak rates are, of course, fatuous and it remains
to be seen whether the tremendous potential offered by such CMP architectures
can be translated into reality by the computational chemist.

7. A parallel implementation of quantum chemistry codes

In the following sections we describe our experience in adapting code to run on
an MVAP system, outlining theimplementation of four important steps in a
quantum-chemical calculation (integral evaluation, SCF, 4-index transformation
and direct-CI) on the parallel environment at the IBM European Center for
Scientific and Engineering Computing (ECSEC) in Rome [38].

In Sect. 7.1 we outline the pertinent features of both the available hardware and
software characterising the parallel environment, and in Sects. 7.2 and 7.3 provide
an outline of the implementation of the four above mentioned steps. We try to

Computational chemistry on FPS-X64 computers 139

assess the efficiency of parallelism for each step, and report some provisional
timings, showing the amount of overhead to be expected. An attempt is then
made to relate our experiences to that likely to be found on CMP architectures.

7.1. The parallel environment at ECSEC

The ECSEC facility consists of an IBM 4383 host computer, running under
VM-CMS, and 10 attached FPS-164 processors each with 1 MWord of memory
and 0.6 GByte of disk space. No communication is possible between the attached
processors, so all communication between the FPS machines has to go through
the IBM host, effectively in serial mode. The communication between IBM and
FPS proceeds through 2 MByte/s !/O-channels.

Two different software environments are provided.

(a) The VM-EPEX approach, developed at the IBM T. J. Watson Laboratory in
Yorktown [39]. This environment allows various virtual machines to run concur-
rently and to communicate and share data via a shared memory. Each virtual
machine has also private memory and private disks. Since each may attach an
FPS-164 processor, "real" parallelism may be obtained by migrating the work-load
to the AP. The VM-EPEX system features shared memory and may thus be
considered to be an approximation to a multi-processor system like the Cray
X-MP, though the latter allows disks to be shared as well.

VM-EPEX offers a preprocessor, with parallel FORTRAN extensions under the
control of directives such as:

@DO Divide a DO-loop over the processes,
@serial begin Defines a part of the code to be executed by one process only,
@barrier Synchronises all processes,

as well as access to shared memory (@shared/Block/) and to the number of
processes and the identification number of each process.

When no control is exerted all processes run in parallel the same code, but not
necessarily the same data, yielding data-driven parallel processing. The shared
memory is not protected against a simultaneous update of the same memory
location by two processes, so in parallel adding into the same variable in shared
memory may produce unpredictable results. Therefore the user has to guard
against this, and the adding of the results from the various processes has to be
performed by a single processor, i.e. serially. The scatter of data, e.g. at the end
of a sort, may be performed in parallel though, since one may be sure that each
memory location is only accessed once. Note that since shared memory is only
available on the IBM host, which was in our case mostly running on 1 processor,
no real parallelism is involved in the manipulation of shared memory anyway.

(b) The VMFACS [40] approach developed at Kingston, is more directly geared
towards a LCAP setup. One Master virtual machine can divide the work over
various slave virtual machines, that can attach in their turn an FPS-164. The IBM
slaves may in fact be transparent to the user, so one may call the attached

140 M.F. Guest et al.

processors directly as slaves in the Master program. Here a preprocessor is
available to translate instructions like:

C$ EXECUTE ON . . .

C$ WAIT FOR . . .
C$ SLIN . . .
C$ SLOUT . . .
C$ SLIO . . .

Execute a subroutine on either a specific slave or
all slaves, with the results collected again on the
master.
Synchronise all or certain processes
Allow for data-communicat ion between master
and slave in a way very similar to the FPS-APEX
IBM-FPS communication.

and one has access to the number of slaves and each slave can access its own
identification.

In the master-slave environment, in contrast to VM-EPEX, the default is to run
in serial mode only on the master and specific instructions are required to run
in parallel. Since the master-slave communication may be "directly" between
attached processor and host and the serial processing on the IBM is built in, this
approach seems the more natural in a LCAP environment.

In the practical parallelisation of a program, however, there seems to be no
difference in actual strategy. Since we want to be prepared for shared memory
machines like the Cray X-MP, the VM-EPEX approach was chosen as the main
implementat ion tool. Various aspects of host-AP control are presented in Appen-
dix II.

7.2. Implementation strategy

In all stages of the quantum-chemical calculation three phases may be distin-
guished in the parallel implementation:

Phase I. The workload is divided among the processes in either an arbitrary way
(using @DO's) or in some carefully predefined manner. Each process produces
its own (intermediate) result file which contains sufficient information to label
the data in a unique way.

In the integral evaluation and the calculation stages of the 4-index transformation
these intermediate files contain labelled integrals. Here since a major part of the
calculation is actually performed in Phase 1, dividing the workload may be left
to a simple scheduler, with the sole constraint being an equi-partition of the load
over the available processors. In Direct-CI the division of the workload is defined
by the calculation of the symbolic interaction between model-configurations. This
is, in general, not a time consuming step and must be partit ioned exactly to match
the Fock-building parts of the integral sorter, and must therefore be divided in
a rigorously deterministic way.

Phase 2. The second phase involves a data-driven calculation, which typically
requires little change to the original sequential code. Each process goes over its
own file and no coordination is required. Examples are (a) the SCF calculation,
where a (partial) Fock-matrix is formed out of the density matrix and the partial

Computational chemistry on FPS-X64 computers 141

2-electron integral file, (b) the sorting stages of the 4-index transformation and,
(c) the H-matrix-vector product in the Direct-CI employing the partial symbolic
file.

Phase 3. The final phase is to synchronise the processes and gather and analyse
the results. The adding and diagonalising of the Fock matrix, the final stage of
the 4-index sort and the adding and analysing of the matrix-vector product in
the Direct-CI fall into this category. This phase runs almost entirely in serial
mode, because it is run on the host IBM, a significant portion involving the
addition of the results of the various processes and analysing the result on the host.

7.3. Practical considerations

7.3.1. Integrals+SCF (Fig. 1). In order to provide an even distribution of work
the first two DO-loops over shell blocks in the two-electron integral code were
collapsed into a single loop over shell triangles. Using an @DO for this combined
loop divides the integral calculation effectively over the processes, yielding partial
integral files. Then the SCF calculation may proceed with the independent
construction of the n partial-Fock matrices. The only overhead involved is the
cost of adding the partial matrices, proportional to n2x np, where n is the AO
dimension and np is the number of processes, whereas the Fock matrix diagonali-
sation (n 3) is at present performed serially by one process only. Since the work
divided is proportional to n 4 (the extra overhead and host-AP I/O amount only
to n2), and the data-driven phase is performed repeatedly, Hartree-Fock calcula-
tions prove to be particularly well suited to MVAP parallel processing.

Fig. 1. Dataflow for GAMESS (integrals + SCF)

"GAMESS"
Process 1 Process 2

(ab/cd)

(ij/kl) (i'j'/k'l')

I J cJ L I
-I F

142 M . F . Guest et al.

7.3.2. Integral transformation (Fig. 2). In the bucket sort, reading the partial
integral file and writing the buckets to the sort file are the only parts running
data-driven parallel (Phase 2). Then follows the reading of the "backchain"
which, since we need to gather all integrals, has to be transported in serial mode
to the host. This yields a significant overhead of the order of n 4 I/O operations
and significant synchronisation overhead. When all integrals needed are in core
the work may be divided (using @DO) over the processes, requiring an additional
n 4 overhead in transporting the integrals back from host to APs. Since the work
performed in parallel is of the order of n 5 and the I/O overhead and serial part
is proportional to n 4, the 4-index may be expected to be a substantial bottleneck
in the calculations, requiring very large dimensions to make the parallelisation
gain prevail over the I/O overhead.

This problem may be completely removed if a.shared disk is provided, as on the
Cray X-MP, or efficient communication between the processors is available. In
the former case one may divide the backchains over the processes, requiring
negligible data transfer (e.g. only the starting block positions) and yielding
completely parallel processing of the entire 4-index transformation without any
overhead.

7.3.3. Direct-CI (Fig. 3). Here again the sorting is performed only partially in
parallel again requiring host-AP I/O. However, this sort is usually not a substan-
tial part of a CI calculation so the overhead stays moderate. The main time-
consuming task in the CI calculation is the H-matrix-vector product which is
performed using raw integrals and symbolic matrix elements. This part is highly
vectorised

4-index
Process 1 Process 2

BINS : (ef / . .)

SORTA

MERGE A

CALC A

SORT B

MERGE B

CALC B

BINS : (e l / . .)

Fig. 2. Dataflow in the 4-index transformation

Computational chemistry on FPS-X64 computers 143

CI
Process 1 Process 2

Fig. 3. Datafiow in direct CI

q (i'j'/kT)

SORT I.

and almost completely driven from the symbolic matrix element list. Therefore
this list generation was divided over the processes in a deterministic way. Since
here the data-driven part is performed repeatedly and is by far the most time
consuming part, with the overhead involving only the addition of the CI vector,
the Direct-CI should be reasonably well adapted.

7.3.4. Preliminary results. We present in Table 10 the timings for a simulated
parallel run on formic acid [41] using the GAMESS program. I f one adopts the
time of each step as the measure, the four processes are seen to run about three
times as fast as the single processor case, whereas the overhead in CPU is only
about 10%. In running the integrals + SCF really parallel on two FPS processors
the elapsed time was ca. 1560 s compared to 2735 s on one processor, substantially
more than the CPU times (cf. Table 10) showing that the IBM at the Rome
ECSEC Center was too heavily loaded to provide realistic or competitive timings.

The amount of code requiring modification amounted to some 2 % - 5 % of the
total, usually only a few lines in any subroutine requiring change. A few routines
needed significant modification, e.g. the builder of the diagonal of the Hamiltonian
matrix in Direct assumed all diagonal elements to be present which is not true
anymore on each process when running in parallel.

7.4. Role of parallelism in quantum chemistry

In the preceding sections we have outlined the current status and prospects for
computat ional chemistry on both MVAP and CMP architectures. A point that

144 M.F. Guest et al.

Table 10. A multi-processor benchmark. Total CPU times (seconds) for an SCF+ SDCI calculation
on formic acid (see text)

Single processor b Multiple IBM virtual processes

FPS IBM-4383 1 2 3 4 max

2e integrals
SCF
4 index
Direct-CI
Total
Integral blocks a
AO integral s
Transformed integrals

330 338 71 137 70 69 137
385 325 127 183 94 73 183
324 913 230 239 226 231 239
440 1593 605 422 359 327 605

3176 1049 999 767 717 1164

2246 430 959 485 377
1861 478 497 455 435

a I Block = 340 integrals+labels
b Timings from the current version of GAMESS on the FPS-164/MAX-3 are as follows:

Integrals: 320 s; SCF: 78 s; 4-index: 172 s; Direct-CI: 340 s

should be stressed is that multi-processing on the coarse-grain level provides the
obvious route to removing the inevitable scalar-bound portions of vector codes.
While we would be very reluctantt 9 embark on serious code implementation on
any system without vector features on each node, it is undoubtedly true that for
many disciplines multi-processing holds the promise of far greater performance
than the present generation of vector supercomputers.

Experience on MVAP architectures has clearly shown the essential role of coarse-
grain parallelism in achieving performance. While we may be accused of naivety
in hoping to carry such techniques directly into the CMP regime, nevertheless
an insistence on the adequate provision of both high speed memory on each
node and high communication rates between nodes would seem crucial in deciding
on the suitability of a specific CMP architecture. While the methods of computa-
tional chemistry lend themselves to MIMD parallel treatment, the present
implementations of post Hartree-Fock methods point strongly towards shared
memory architectures.

It is perhaps worth trying to put into context the advent of multi-processor
capabilities in the light of advances made possible by vector machines. To date
developments in some areas of quantum chemistry have kept pace with the
advances in VP machine architecture. Thus the size of problem amenable to study
by both MCSCF and CI techniques has increased by between two and three
orders of magnitude in the last decade, a figure comparable to the increase in
machine performance witnessed over the same period. The major impact of VPs
has, however, been not so much the ability to perform state-of-the-art calcula-
tions, but more the ability to decrease response time to the demands of our
experimental colleagues. This situation is especially true in an industrial
environment.

There remains, however, the dilemma of the centralised VP. However prestigious

Computational chemistry on FPS-X64 computers 145

a research group, it is never likely to control more than, say, one or two hours
a day on such machines. The same situation will almost certainly apply on the
present and future generation of MVAP machines. While the achievements of
Clementi and co-workers on the LCAP architecture are extremely impressive,
one should not lose sight of the obvious cost of such an installation. Based on
peak rates alone, the cost/performance ratio for CMP systems would suggest an
order of magnitude improvement over that realised by current supercomputer
facilities.

An increasing requirement in the application of QC techniques to the field of
computer-aided molecular modelling is that of the interactive work-station with
high-speed graphics, typified by the Evans and Sutheriand PS300. Such stations
presently rely on machines such as the VAX-11/780 - the impact of CMP machines
on personal workstations cannot be overestimated. It is difficult to visualise the
availability of such facilities for an external user community on a centralised
MVAP machine, given the current state of networking.

In an MVAP environment one needs to assess the cost-effectiveness of employing
statistical parallelism (multiple streams of independent jobs) as against permitting
a single job to control all machine resources. As demonstrated by Bauschlicher
[6b], the communication overhead on an X-MP/24 is less than 10% on typical
QC applications: if a specific application requires all of memory, it is in the
interest of efficient machine utilisation for that job to use the full CPU power of
all processors. One situation where there exists a clear requirement for parallelism
is when a certain arbitrary resource is in short supply. Examples may be that the
disk-space on one processor of an LCAP system is not sufficient to store the
integrals for a given calculation. It is then essential to spread the job, and the
integrals over various processors.

8. Summary

We have outlined the present use and impact of FPS-X64 scientific computers
in computational chemistry, focusing attention on performance obtained on an
FPS-164. There are several aspects of the present work which perhaps set it apart
from that conducted at other FPS-164 installations:

(i) The machine is judged in terms of its performance against, not a VAX 11-780
or a superminicomputer, but against machines such as the Cray-1 and
Cyber-205.

(ii) The user environment, involving both in-house and networked access at
Daresbury, provides a far more demanding test of the machine than the more
traditional "single user, single program" framework.

Experience to date suggests that the strength of the X64 products lies in the final
CPU performance obtained, the various comparisons performed herein depicting
factors for the FPS-164 of between 1/10 and 1/4 Cray-lS performance over a
wide range of codes. The weakness of the min i+AP setup lies perhaps in the
host-resident software, and the adverse effects of the rather primitive operating
system on the AP.

146 M.F. Guest et al.

Never the less , the ques t ion as to whe ther the m i n i + A P setup prov ides a v iable
a l te rna t ive to t ime-sha red s u p e r c o m p u t e r access would , at least in c ompu ta t i ona l
chemis t ry , appea r s to be answered affirmative.

In assessing the migra t ion o f c o m p u t a t i o n a l chemis t ry codes to a para l l e l environ-
ment , we have cons ide red the meri ts o f bo th M V A P and C M P archi tectures . Our
own exper ience in imp lemen t ing H a r t r e e - F o c k and Di rec t -CI codes on a para l l e l
M V A P env i ronmen t suggest tha t the bo t t l eneck to an efficient i m p l e m e n t a t i o n
may reside in the in tegra l t r ans fo rma t ion step, at least on non - sha re d m e m o r y

archi tectures .

M V A P systems imply a cen t ra l i sed faci l i ty, and the obvious shor tcomings associ-
a ted with such an env i ronment , e.g. inf lexible mach ine managemen t , ne tworking ,
etc. Based solely on p e a k pe r fo rmance , C M P archi tec tures p romise to real ise the
full po ten t i a l o f ab initio t echniques in a rea l - t ime works ta t ion env i ronmen t for
the n o n - c o m p u t e r mo t iva t ed chemist . The role o f the c o m p u t a t i o n a l chemis t in
deve lop ing this scenar io is crucial .

Acknowledgments. MFG and RJH wish to thank FPS (UK) for all their assistance provided to date.
We thank F. Tarantelli (Perugia) for much help with IBM, FPS and the ECSEC environment, and
S. Paternello (ECSEC) for valuable advice and special IBM subroutines, We are indebted to ECSEC
for financial support. JHvL and LCHvC also thank IBM Holland (Dr. Ir. F. G. Insinger) for such
support. We thank D. E. A. Pozzi for editing the manuscript.

Appendix I

A computational chemistry and physics benchmark (see Table 9)

Code Calculation

GAMESS
MULTI
DISCO
MOPAC
MDTEST
CASCADE
LMTO

2nd-order CI calculation on H20 (TZVP basis; 53 937 csf)
CASSCF calculation on Till4 (17 945 csf)
Direct-SCF calculation on HCONH2 (DZ basis)
Partial geometry optimisation of anthraquinone (no symmetry)
MD simulation of liquid argon (5000 time steps of 108 particle system)
Energy minimisation of Na+ defect in quartz
Self consistent energy for hcp gadolinium

Appendix II

Using the APs under A P E X 6 4

The ac tua l p r o g r a m m i n g o f and c o m m u n i c a t i o n with the APs is p e r f o r m e d by
APEX64. The A P E X 6 4 sys tem controls c o m m u n i c a t i o n be tween the hos t and
APs for pa ra l l e l use. I t enables the user to ini t ia l ise and reques t a n u m b e r o f APs
and re lease them again af ter use. This " r e a l " pa ra l l e l use o f the APs was only
ach ieved for the in tegra l and S C F modu le s o f G A M E S S . Wi th in the f r amework
desc r ibed above (Sect. 7.3), a l ter ing subrout ines tha t were a l r eady runn ing in

Computational chemistry on FPS-X64 computers 147

simulated parallel mode was straightforward. For instance, the integral routine,
consisting of a large nested loop structure, with an @DO as outer loop is divided
into three parts, each calling a separate AP routine.

(i) The first routine call initialises the AP and transfers data from the host.
(ii) Within the @DO-loop host-computation of the integrals is replaced by a

call to corresponding AP routines. The workload is distributed by the @DO
loop, using the loop index as calling parameter.

(iii) Finally, after completion of the integral calculation on all processors, a third
routirre returns some data to the host, though the partial integral files are
left on the AP. (Using only one AP routine with several entry points proved
to be impossible.)

Using this construction one must be careful to use SAVE statements to preserve
the status of the processors on transferring control between host and APs. Su'ch
statements must be introduced in all subroutines in which the SAVE'd parameters
or common blocks appear. Failure to do so produces error diagnostics from
APLINK.

Although it was not strictly necessary, the APs were attached for the total duration
of the job.

Timings were difficult to obtain, but compared to the simulated parallel jobs the
work load appeared to be far less evenly distributed. When running a large job
and/or using a larger number of APs (say 8) unpredictable results were obtained.
Roll-in/roll-out problems were encountered on several of the APs, leading to
premature job abortion. On some occasions the results obtained were dearly in
error. Insufficient time was available to investigate these problems further.

References

1. Killmon P (1983) Computer Design 22:167
2. a. Shepard R, Bair RA, Eades RA, Wagner AF, Davis MJ, Harding CB, Dunning TH Jr (1983)

Int J Quant Chem 17; Bair RA, Dunning TH Jr (1984) J Comp Chem 5:44
b. Bair RA (1984) FPS-164 matrix multiplication subroutine guide. Argonne National Lab
c. Dunning TH Jr, Bair RA (1984) Advanced theories and computational approaches to the
electronic structure of molecules, pl., NATO ASI Series. Reidel, Dordrecht Boston London

3. a. Guest MF, Wilson S (1981) in: Proc American Chem Soc Meeting, Las Vegas, August 1980.
Wiley-Interscience, New York
b. Saunders VR, Guest MF (1982) Comput Pbys Commun 26:389
c. Guest MF (1985) In: Supercomputer simulations in chemistry. Montreal

4. Saunders VR, van Lenthe JH (1983) Mol Pbys 48:923
5. Ahlrichs R, Bohm HJ, Ehrnardt C, Scharf P, Schiffer H, Lischka H, Schindler M (1984) 6th

Seminar on Computational Methods in Quantum Chemistry 31; Rohmer MM, Bernard M (1985)
ASTERIX - a quantum chemistry package vectorised for the Cray-1. In: Supercomputer simula-
tions in chemistry. Montreal

6. a. For recent applications in parallelism see the work of E. Clementi and co-workers, Department
48B, Kingston, NY
b. Partridge H, Bauschlicher C (1985) Algorithms vs Architectures for Computational Chemistry.
In: Austin Conference on Algorithms, Architectures and the Future of Scientific Computation,
Austin

7. Clementi E, Corongiu G, Detrich JH (1985) Comput Phys Commun 37:287

148 M.F. Guest et al.

8. Guest MF (1986) In: Computational physics and chemistry on an FPS-164/MAX, CCP/86/1
9. IMSL Program Library (1978)

10. NAG Fortran Library, Numerical Algorithms Group Ltd, 1984
11. Beppu Y (1982) Computers and chemistry 6
12. Stewart JP (1984) MOPAC - A general molecular orbital package. QCPE 455
13. Saunders VR, Guest MF (1976) ATMOL3, RL-76-000; Guest MF, Saunders VR (1974) Mol Phys

28:819
14. Almlof J e t al. (1982) J Comp Chem 3:385; Almlof J, Taylor PJ (1984) In: Advanced theories

and computational approaches to the electronic structure of molecules, p 107 NATO ASI Series.
Reidel, Dordrecht

15. Dupuis M, Rys J, King HF (1976) J Chem Phys 65:111; King HF, Dupuis M (1976) J Comput
Phys 21:144

16. McMurchie LE, Davidson ER (1978) J'Comput Phys 26:218
17. Roothaan CCJ (1960) Rev Mod Phys 32:179
18. Yoshimine M (1969) IBM Technical Report, RJ-555, San Jose, USA
19. Siegbahn PEM (1980) J Chem Phys 72:1647
20. a. Weruer H-J, Knowles PJ (1985) J Chem Phys 82:5053 and references therein

b. Knowles PJ, Werner H-J (1985) Chem Phys Lett 115:259
21. Saunders VR (1985) VAMP on the Cyber-205
22. Pulay P (1969) Mol Phys 17:197; (1970) 18:473; (1971) 21:329
23. Dupuis M, Spangler D, Wendolowski J (1980) NRCC software catalog, vol 1, program no. QG01

(GAMESS); Guest MF, Kendrick J (1986) GAMESS user manual. An introductory guide,
CCP1/86/1 Daresbury Laboratory

24. Pulay P (1982) J Comp Chem 3:556
25. Schlegel HB (1982) J Chem Phys 77:3676
26. Bell S, Crighton JS (1984) J Chem Phys 80:2464
27. Cerjan CJ, Miller WH (1981) J Chem Phys 75:2800
28. Guest MF, Hillier IH, Vincent M, Rosi M (1986) JCS Chem Commun: 438
29. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) Nature 318:162
30. a. Haymet ADJ (1986) Chem Phys Lett 108:421; ibid, (1986) J Chem Soc 108:319; Haddon RC,

Brus LE, Raghavachari K (1986) Chem Phys Lett 125:459
b. Disch R, Schulman JM (1986) Chem Phys Lett 125:465

31. Corongiu G, Detrich JH (1985) IBM J Res Develop 29(4):422
32. Clementi E (1985) J Phys Chem 89:4426
33. Seitz CL (1985) The cosmic cube. Comm of the ACM 28-1:22
34. Ostlund NS, Whiteside RA (1985) A machine architecture for molecular dynamics: The systolic

loop, Annals of the New York Academy of Science
35. Stolfo SJ, Shaw DE (1982) DADO: A tree-structured machine for production systems. AAAI 82.

Carnegie Mellon University
36. Christ HN, Terrano AE (1984) A very fast parallel processor, IEEE Transactions on Computing

C-33-4:344
37. Fox CG, Otto SW (1984) Algorithms for concurrent processors. Physics Today 37-5:50
38. The work described herein was carried out during two periods at ECSEC, initially by MFG and

then JHvL and LCHvC, each stay of four weeks in duration. Unfortunately we have not been
able to polish the work or obtain more definitive benchmarks as it remains impossible to use the
ECSEC facility remotely from either the UK or the Netherlands

39. Darema-Rogers F, George DA, Norton VA, Pfister GF (1985) A VM parallel environment IBM
research report RCl1225. Yorktown Heights, NY

40. Chin S, Domingo L, Caltabiano R, Carnevali A, Detrich J (1985) Parallel computation on the
loosely coupled array of processors: A guide to the precompiler. IBM Corporation, Kingston, NY

41. van Lenthe JH (1985) Supercomputer 5:33

